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Abstract—
This paper presents a method to construct an aggregation
function, reflecting a complex set of initial user preferences, which
can be used in the framework of multi-criteria decision making.
We consider problems where the decision maker can provide
information about the importance and interactions between
criteria, as well as a desired portion of criteria to be satisfied.
The proposed aggregation process is a vague Choquet integral,
whose parameters are constructed in two steps. First, we solve
a convex constrained L1 optimization problem to obtain a fuzzy
measure reflecting the importances and interactions between
the criteria. Then the measure is transformed by a monotonic
mapping to include vague information on what portion of criteria
has to be satisfied. The proposed approach provides an automated
construction of an aggregation function, which is completely free
of data learning and manual processing. In addition, this method
provides a novel fuzzy measure that integrates two different
classes of information - importance/interactions of criteria and
vague statements.

Index Terms—Multiple criteria decision aid, Choquet integral,
L1 optimization, vague statements, importance and interactions

I. INTRODUCTION

MULTI-criteria decision analysis (MCDA) is a sub-
discipline of operations research that focuses on mak-

ing decisions based on the combined information provided by
a set of criteria. It often involves choosing the best alternative
from a given set of options by integrating several expert
opinions. MCDA has found numerous applications in various
areas such as transportation, sustainable energy, corporate and
financial decision making (see e.g., [45], [9], [49], [50]) and
recently cyber crime attack attribution problems [40]. A par-
ticular method of combining information in MCDA problems
is through aggregation functions. Aggregation functions (or
aggregation operators) can be applied in situations where one
has to choose an optimal element from a given set of actions
or objects, which can be compared with respect to different
features. A typical problem involves having some numeric
representation (scores) of how well each object satisfies each
of a set of criteria. Once those numbers are known, one’s
aim is to combine the given scores, i.e. aggregate them into
a global value, which provides an overall measure of how
good the object is. The global scores can then be used to
rate the different alternatives and consequently decide which
is optimal.

The combination of scores is achieved by an aggregation
function, which in all generality is simply a multi-variable
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function, that has a real output. Some typical examples of
aggregation functions are the arithmetic and weighted mean.
Those are usually used in problems where one can rate
the importance of the different criteria using weights, which
reflect how much the final aggregated value depends on
each individual score (see e.g. [34], [44]). When applying
linear models like the weighted mean one assumes that dif-
ferent features are independent, however in more complex
environments they could interact (see e.g. [30], [11], [39]).
Specifically, it could be the case that several criteria point to
similar information regarding the object and while each may
be individually very important, their combined effect on the
aggregated value should not be much higher than the effect
of each independently. In the case described we would call
the criteria or features redundant. Conversely, one could have
that several criteria capture complementary information so that
their overall effect is much higher than the individual effect
of each. We refer to the latter as being complementary or
synergetic.

The typical example that appears in the literature to illustrate
such interactions is the student ranking problem (see [16]).
In this problem one has all the grades in various subjects
of each student and wishes to rank the latter based on their
overall performance. The additional assumption made is that
subjects are not independent. For example, if a student is
good at mathematics he/she is very likely to be good at
physics as well. Thus the two grades in mathematics and
physics point to similar student qualities and are redundant.
Conversely, good grades in mathematics and literature indicate
that a student is “well rounded” and are complementary.
Linear models like the weighted average are incapable of
capturing the complex relationships we just described, which
necessitates the application of different aggregation functions.
The typical aggregation function used for reflecting criteria
interactions is the Choquet integral (see [16], [30], [32], [21]).
The formulation of the Choquet integral makes it particularly
useful for modeling complex criteria relationships and it has
become a central tool for addressing problems in MCDA,
finding numerous practical applications (see the surveys in
[32], [21], [26]).

Another variation of the aggregation problem involves the
case when one rates objects based on the portion of criteria
they satisfy without any preference on which exactly. For
example, a decision maker (DM) might value objects, which
satisfy at least half of a set of criteria well, regardless of
how they perform on the other half. Alternatively, a DM
might wish to disregard the best and/or most poorly satisfied
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criterion when evaluating an object due to some possible bias.
In the examples described, the rating of an element only
depends on the set of scores it has for each criterion and is
invariant under permutation of those scores. This introduction
of nonlinearity renders the weighted average inapplicable and
several operators have been proposed for this kind of problem
such as the ordered weighted average (OWA) and the weighted
OWA (WOWA) [46], [43]. Operators in the OWA family have
been used for rating objects based on preferences of the form:
“assign a high aggregated value if at least half of the scores
are high”. The example just given is often referred to as a
vague statement and one can obtain different vague statements
by replacing “at least half”, with “most”, “some”, “all” etc.
Linguistic quantifiers such as “most” and “some” are often
open to interpretation which is why statements specified by
them are called vague [48]. Over the last couple of decades
OWA operators have found numerous applications in various
fields like neural networks ([7], [47]), geographical informa-
tion systems ([24], [35]) and group decision making under
linguistic assessments ([22], [23]). We remark that both the
OWA and WOWA are special cases of the Choquet integral,
however the two types of aggregation operators have largely
been used in different kinds of problems (see [16], [21]).

The two variations of the aggregation problem presented
above have been extensively studied and analyzed in [48], [12],
[14], [18], [33], [16], [21]; however, there is no one universally
accepted method for approaching problems that present both
types of preferences. It is thus the purpose of this paper to
develop an aggregation function that is capable of reflecting a
complex set of user preferences, which include:
• relative importance of different criteria
• interactions between criteria
• vague statements.

In particular we will assume that the user (decision maker)
can rate the importance of different criteria, has information
about the way they interact and has the additional preference
of a vague statement. In our proposed approach, which will
be described in more detail in the next section, we will
try to combine some of the benefits of the OWA and the
Choquet integral. We will take advantage of the ability of the
OWA and the Choquet integral to model vague statements and
interactions between criteria respectively and incorporate those
features into a final aggregation function that reflects all of the
above user preferences.

In order to take advantage of the two operators we first
need to construct the sets of parameters that define them.
In many cases the parameters are designed manually by
an expert of the decision problem, which is being modeled
(for some recent examples see [41], [40]). However, if the
number of criteria is N we have that the OWA is defined
by N weights, while the Choquet integral by 2N parameters.
The high parameter complexity of the models makes manual
construction extremely difficult as N becomes large. Thus for
practical purposes we design our method of construction to be
automated.

The framework, which we will use for designing the
parameters of the Choquet integral is optimization. Some
applications of optimization for finding the parameters of the

Choquet integral can be found, among many others, in [14],
[33], [20], [29], [32], [25] . In most of these papers the authors
assume that one has a set of rated examples, which can be used
as a basis for the construction of a fuzzy measure. In practice
this may not be true as can be seen in [41], [40], where due
to insufficient data the authors constructed their parameters
manually. We thus develop our model to be free of any data
learning. Avoiding data learning makes our approach much
more applicable to areas where there is a lack of sufficient data
or where data quickly becomes outdated and unusable for any
decision making. We only assume that the user can provide
information on the preferences listed above and not necessarily
a rating of different examples, although this modification can
easily be incorporated.

Optimization (also known as energy minimization) is used
in many fields to solve ill-posed inverse problems. Typically,
one wants to solve the problem Au = f , where f is given but
A is ill-conditioned. The problem is solved by minimizing the
following quantity:

F (u) = ||u||+ λ

2
||Au− f ||22

where || − || is a regularizer (commonly in the form of a
norm or semi-norm). In the fields of compressive sensing (see
[10], [28], [4]) and image processing (see [27], [36], [3]),
sparse regularization is frequently used in order to reconstruct
a vector u, which has few non-zero elements. The optimal
regularizer is the L0-“norm”; however, a convexified version
can be found by replacing it with the L1-norm. The resulting
minimization is as follows.

min
u
F (u) = min

u
||u||1 +

λ

2
||Au− f ||22

= min
u

∑
j

|uj |+
λ

2
||Au− f ||22

Other L1 type regularizers include the total variation (TV)
semi-norm (i.e. ||∇u||) and the nuclear norm (i.e. the sum of
the singular values). The TV semi-norm induces sparsity in
the jump set of the data (see [36]) while the nuclear norm
induces pattern sparsity in large data sets (see [5], [37]).

In this paper, we will use the L1 norm to regularize
the interaction parameters within the model of the Choquet
integral, which is supported by the theoretical well-posedness
of a 2-additive fuzzy measure (see Section III). The parameter
f is provided by the user and represents his/her belief on what
the interactions should be, while the matrix A is a binary
operation, which is 1 if an interaction is given and 0 otherwise.

The remainder of the paper is organized as follows. In
Section II we describe the format of the preferences provided
by the user as well as the general strategy of constructing our
final aggregation function. In the third section we summarize
some of the basic facts and definitions pertaining to the Cho-
quet integral. Section IV develops the optimization framework
we employ to construct the fuzzy measure, reflecting criteria
importance and interactions. In the following section we
design the weights for the OWA, based on the vague statement.
Subsequently, we combine the two sets of parameters into
a vague fuzzy measure, which models our final aggregation
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function. In Section VI we analyze the performance of our
operator on two examples and conclude with some closing
remarks in Section VII.

II. OUTLINE OF CONSTRUCTION METHOD

As we mentioned in the previous section our goal is to
construct an aggregation function that captures a complex
set of user preferences including relative importance and
interactions of criteria and vague statements. We will assume
that a user presents this information in the following form:
• Importance: The relative importance of criteria is pro-

vided via statements like “criterion 1 is twice as important
as criterion 2”.

• Interactions: The interaction between two criteria i and j
is given via a number between −1 and 1. Negative values
are interpreted as i and j being redundant, i.e. pointing to
similar information, while positive values are interpreted
as the two criteria being synergetic, i.e. pointing to
complementary information. The value 0 implies that the
two criteria are independent.

• Vague statement: A linguistic quantifier is submitted and
it determines how many scores need to be high in order
to maximize the final aggregated value.

As mentioned in the introduction, the formulation of the
Choquet integral makes it exceptionally suitable for modeling
the importance and interactions of criteria, while the OWA
appropriately models vague statements. Thus as an initial step
we build the parameters underlying these two aggregation
functions. The fuzzy measure for the Choquet integral is
constructed based on the information given for the importance
and interactions, while the weights for the OWA are built based
solely on the vague statement.

For this first step we will assume a 2-additive model for
the Choquet integral, which will provide us with a sufficiently
powerful framework for representing the types of preferences
described above. The 2-additive Choquet model is specified
by two kinds of parameters called importance indices and
interaction indices. As the names suggest they measure the
importance of each criterion and the interaction between pairs
of criteria respectively. We will construct these parameters,
by minimizing an energy function that reflects properties that
we view as desirable for an optimal solution. Subsequently
we design weights for an OWA operator. We will use RIM
quantifiers of the truncated Gaussian distribution to construct
those weights, which provides a natural and well behaved
solution.

In the second step of construction we use both sets of
parameters designed in the first step to create a fuzzy measure,
which will be a basis for the Choquet integral that is our final
aggregation function. For clarity, we will refer to the latter as
a vague fuzzy measure and a vague Choquet integral to stress
their dependence on the vague statement. The purpose of the
vague Choquet integral is to combine the information reflected
by the parameters of the OWA and the Choquet integral. It
acts by increasing the aggregated value of examples which
both models render good and penalizing the aggregated score
of examples on which the two disagree.

The next section provides some of the basic definitions and
results for the Choquet integral and thus may be skipped by
those who are familiar with the concept. We refer the reader
to [1], where one can find additional properties of the discrete
Choquet integral as well as the OWA function.

III. PRELIMINARY DISCUSSION ON FUZZY MEASURES

For the rest of the paper, we assume N to be a set of n
elements, 2N to be the power set of N and z to be a vector
in R, whose entries are real values between 0 and 1.

Definition 1. A capacity [8] or fuzzy measure [38] is a set
function ν : 2N → [0, 1], satisfying the following properties:

1) ν(∅) = 0
2) A ⊆ B implies ν(A) ≤ ν(B)

The fuzzy measure is normalized if in addition ν(N ) = 1.

Definition 2. The (discrete) Choquet integral of an input
vector z with respect to a fuzzy measure ν is given by

Cν(z) =

n∑
i=1

z(i)[ν({j|zj ≥ z(i)})− ν({j|zj ≥ z(i+1)})] (1)

Where z(1) ≤ z(2) ≤ ... ≤ z(n), i.e. z(i) is the ith largest
component of the input vector z. In addition, we use the
convention that z(n+1) =∞.

Within this paper fuzzy measures are always assumed to be
normalized. We in addition adopt the notation z↘ to mean
the vector, whose components are the entries of z sorted in
descending order.

The formulation of the Choquet integral, requires the defi-
nition of 2n − 2 parameters, corresponding to the subsets of
N (excluding ∅ and N , whose values are fixed to be 0 and 1
respectively). The exponential complexity of the model often
makes it difficult to construct parameters that exhibit certain
desirable properties, which necessitates the use of simpler
formulations that are easier to mold. A particular simplification
introduced in [18] is the notion of k-additive fuzzy measures.
k-additive fuzzy measures are families of fuzzy measures,
ranging from the additive case (k = 1) to the general case
(k = n). The formal definition is as follows.

Definition 3. A fuzzy measure ν is said to be at most k-additive
(1 ≤ k ≤ n) if its Möbius transform satisfies

Mν(A) = 0

for any subset A with more than k elements, |A| > k. A fuzzy
measure ν is k-additive if in addition there exists a subset
B ⊆ N with k elements such that Mν(B) 6= 0, where the
Möbius transform of a fuzzy measure ν is a set function defined
for every A ⊆ N as

Mν(A) =
∑
B⊆A

(−1)|A\B|ν(B)

In this paper we are primarily focusing on 2-additive fuzzy
measures, which extend the basic additive model by allowing
for interactions between elements of N . In the case of a 2-
additive measure one can obtain a different representation of
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the Choquet integral, which involves an easier to interpret set
of parameters called the importance and interaction indices.

Definition 4. The importance (Shapley) index of an element i
∈ N w.r.t. a fuzzy measure ν is given by

Ii =
∑
A⊆N\i

(n− |A| − 1)!|A|!
n!

[ν(A ∪ {i})− ν(A)]

The Shapley value is the vector Is = (I1, ..., In).

Definition 5. The interaction index between two elements i,j
∈ N w.r.t. a fuzzy measure ν is given by

Iij =
∑

A⊆N\{i,j}

(n− |A| − 2)!|A|!
(n− 1)!

[ν(A ∪ {i, j})−

ν(A ∪ {i})− ν(A ∪ {j}) + ν(A)]

An alternative representation of the interaction index between
i and j can be given in terms of the Möbius transform of the
fuzzy measure ν:

Iij =
∑
B|i,j∈B

1

|B|+ 1
Mν(B)

An importance index measures the contribution of a specific
element in all possible coalitions, i.e. the “benefit” of adding
that element to an already constructed subset of N . Similarly,
the interaction index measures the average contribution of
adding a pair of elements to a given set, as opposed to adding
just one of the elements. If Iij > 0 the elements i and j
are said to be synergetic and if Iij < 0 they are said to
be redundant. The notion of the interaction index has been
extended by Grabisch in [17], to represent interaction among
arbitrary subsets of N . However, since we are working with
a 2-additive fuzzy measure, we only concern ourselves with
the sets of parameters - Ii and Iij . In fact, it can be proved
(see for example [18], [21]) that these parameters completely
determine the fuzzy measure if it is 2-additive and one can
represent the Choquet integral alternatively in the following
form.

Cν(z) =
∑
i∈N

ziIi −
1

2

∑
{i,j}⊂N

Iij |zi − zj | (2)

We end this section with a set of useful identities when ν is
2-additive, which are going to be used extensively further in
the paper. The properties listed below are easily verified from
the given definitions.

n∑
i=1

Ii = 1 ⇐⇒ ν is normalized

Ii ≥
1

2

∑
i 6=j

|Iij | ∀i ∈ N ⇐⇒ ν is monotone

(3)

Notice that the condition that the fuzzy measure is monotone
is related to the L1 norm of the interactions. This relationship
provides support that L1 regularization is natural for optmizing
the parameters of a Choquet integral.

IV. OPTIMIZATION AND FUZZY MEASURES

As mentioned in the first two sections it is our desire to
build an aggregation function for modeling a wide range of
preferences of a DM. Since we are working with a rather
complex set of preferences, we split this problem in two parts.
In the first we construct a 2-additive fuzzy measure, which
reflects the relative importance and interactions among criteria
as well as a set of weights that capture the provided vague
statement. In the second step we use both sets of parameters
and based on them construct a vague fuzzy measure that
captures all user preferences. This section describes how we
obtain the 2-additive fuzzy measure as the unique minimizer
of a convex optimization problem.

The application of optimization for designing fuzzy mea-
sures has been studied extensively in previous works on
MCDA [33], [14], [20], [29], [32], [31], [25]. Due to the
complex nature of the Choquet integral one often needs
an automated way to construct its parameters. A common
approach is to define an objective function, reflecting some
desired property. The function is then optimized under a set
of constraints, imposed by the preferences of the DM and by
the theoretical constraints of the model. In [33],[14], [20] the
Choquet integral was defined as the unique minimizer of the
total squared error, over a set of alternatives. In particular,
the DM assigns some values to different options and then the
Choquet integral is determined, by the fuzzy measure, which
gives the smallest deviation from those values. A different
approach, adopted in [29], [32], [31], maximizes the difference
in overall scores among alternatives. I.e. given some ordinal
information for a set of options, one finds the measure that
maximizes the overall distance between these options, thus
optimally differentiating between them.

The methods described above depend strongly on learning
data provided by the DM. Since we desire our construction
to be independent of data learning, we cannot use either of
them and thus approach the problem differently. Our aim is
to only use information provided by the DM on the relative
importance and interactions among criteria, without asking
him/her to rate alternatives in any way. The objective function
that we optimize is then going to model the general structure
of the measure, subject to those constraints. In this context,
our approach is similar to the one used by Kojadonovic in [25]
with two major differences. Firstly, the energy function that
we develop aims to obtain a sparse representation of the inter-
actions among criteria, for reasons that will be explained later
in this section. Secondly, we strongly take advantage of the 2-
additive form of the measure, and do not aim to maximize its
uncertainty as in [25], since not all available information has
been introduced during the first step of construction. Given
our distinct goals, we propose a novel objective function and
formulation of the problem.

A. The Data

We assume that the DM provides the following set of
preferences, based on his/her domain knowledge:

• Linear relationships between the importances of criteria
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• Values for the interactions between two criteria on the
scale [−1, 1].

The importances of criteria are connected via statements
like “Criterion 1 is twice as important as criterion 2”. The
numerical value entered for the interaction between criteria i
and j is denoted by I0ij . If no information is provided on how
i and j interact the value I0ij is set to zero (i.e. the criteria are
independent). A positive value implies that the DM believes
the criteria are synergetic and a negative value - that they
are redundant. We interpret the provided cardinal values as
the DM’s “initial guess” on the interaction indices in our 2-
additive fuzzy measure.

It is difficult to motivate how the DM comes up with
the above values for the interactions. This problem also
appears in [25] where the author includes equations such as
Iij = m (where m is some numerical constant) within the set
of possible constraints. These equations uniquely determine
the interaction indices, although the author does not restrict
himself to 2-additive fuzzy measures. In our case, we aim
to obtain a 2-additive fuzzy measure, which imposes much
stricter conditions than the general case. In order to overcome
this issue, we relax the condition of setting the interaction
indices exactly as prescribed by the user. Instead, we add a
fidelity term in our energy function that minimizes the distance
to the desired user values, while maintaining the 2-additive
structure of the solution. The fidelity term ensures that the
values obtained for the interaction indices are close to the
one provided by the user, without necessarily imposing strict
equality. The motivation for this relaxation of the constraints
lies in our assumption that the initial parameter set does not
necessarily define a well-posed fuzzy measure.

B. Feasible Set

The next step in our problem is deriving the constraints
in our optimization problem from the preferences of the DM.
Similarly to [30] and [25], we translate preferences on criterion
importance into linear constraints using the importance indices
of a fuzzy measure. For example I1 − 2I2 = 0, would be
the interpretation of “criterion 1 is twice as important as
criterion 2”. In general, the k-th preference can be written as∑n
i=1 aikIi = 0, resulting in a linear system with A = [aik]

as the linear operator. The parameters I0ij will be used in
the definition of our objective function, and not used as
constraints.

Remark: Our approach does not require that the relationship
between the importance indices is given via linear equalities.
The approach admits any dependency that leads to a convex set
of feasible values. In particular, one can define relationships
via inequalities of the form I1 − I2 ≥ 0, to indicate that the
first criterion is more important than the second or as in [30]
and [25] use I1− I2 ≥ δ, with some predefined small positive
value δ.

From the theory, the constructed measure needs to be
normalized and monotone in order to be well posed. The
latter conditions were provided in equation 3 at the end of
the previous section. Altogether, the (convex) set of feasible

solutions (Ii, Iij) is:

A =


n∑
i=1

aikIi = 0 ∀k,
n∑
i=1

Ii = 1, Ii ≥
1

2

∑
i 6=j

|Iij |

 (4)

In general, as long as the Ker(A) is “large enough,” the set A
stays non-empty. In practice, as long as the equality relations
between the importances indices remain consistent, a solution
will exist.

C. Objective function for parameter estimation

We propose the following objective (energy) function to be
minimized.

F ({Ii}i∈N , {Iij}i,j∈N ) = α
∑
i∈N

Ii log Ii+∑
i,j∈N

(
|Iij |+ β(Iij − I0ij)2

)
,

(5)

where α and β are fixed positive constants. Both the function
and feasible set is convex, providing a unique minimizer (when
one exists). Also note that although the energy function does
not couple Ii and Iij , the constraints that they lie in A does.

The first term of equation 5, represents the entropy of the
importance indices, which is chosen to provide an appropriate
distribution for the values of Ii even when little information
is provided. This term also discourages Ii from being zero,
therefore every criterion is taken into account in the decision
process. The entropy term ensures all criteria are considered
nearly-equal in terms of importance when no information is
provided to the contrary.

The second term in equation 5 is the L1-norm of the interac-
tion parameters, encouraging sparsity in the interactions Iij . A
sparse distribution of interaction parameters is well motivated
by both theory and practice. In terms of theory, being a well-
posed fuzzy measure translates to an L1 constraint on Iij
(in terms of Ii). In addition, the nature of the 2-additive
fuzzy measure implies that complex interactions (higher order
behaviors) between the criteria must be ignored for well-
posedness. In terms of practice, one assumes that only some
criteria interact, otherwise the given criteria may not be rea-
sonable. A low amount of interacting criteria implies sparsity
of the interaction parameters. In general, the interactions of
higher (relative) magnitude are more influential in the overall
aggregation process, so that the idea of sparsity is consistent.
Thus having an L1-norm in the energy function allows us to
obtain a solution that captures the basic relationships between
criteria, without leaving the framework of 2-additivity.

As mentioned before the parameters I0ij represent the user’s
belief of what the interactions should be. Of course, it could
be the case that the input values are not feasible for a 2-
additive fuzzy measure or inconsistent in some other way.
In this regards, we include an L2 fidelity term to keep our
solution close to, but not exactly equal to, the initial data set.
This norm is used in L2 data fitting, for example, least squares
fitting. Minimizing this norm maintains a level of closeness
between the input and output interactions. In general, any p-
norm with p > 1 can be used; however, L2 is chosen since
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in the unconstrained case, the minimizers are found by soft
thresholding, and this provides the desired sparsity behavior.

Altogether, the proposed optimization is as follows.

minimize
{Ii}i∈N ,{Iij}i,j∈N

F ({Ii}i∈N , {Iij}i,j∈N )

subject to ({Ii}i∈N , {Iij}i,j∈N ) ∈ A

The above is a convex optimization problem, which has a
unique solution and can be solved using well-developed meth-
ods, for example, Lagrange multipliers or Bregman iterations.
In order to provide some intuition on the behavior of the
solution we consider the case when the set of linear constraints
uniquely determine the importance indices. In that case the
energy function reduces to∑

i,j∈N

(
|Iij |+ β(Iij − I0ij)2

)
The above function has a well-known minimizer in the uncon-
strained case given by

Iij = shrink(I0ij , 1/2β),

where the function shrink(x, λ) for λ > 0 is given by

shrink(x, λ) =

 x− λ if x > λ
x+ λ if x < −λ
0 otherwise.

Using the above one can easily verify that in our optimiza-
tion problem if 1/2β ≥ |Iij |0, then the unique minimizer
necessarily satisfies Iij = 0. The latter indicates how in
general a sparse interaction profile is obtained. Essentially, all
interactions of small magnitude are automatically set to 0. The
shrink function plays an important role in L1 regularization
problems especially in methods such as the Split Bregman
[13].

The exact behavior of the solution of our optimization
problem is not completely clear, although some general ten-
dencies such as the one above describe it to some extent.
In Section VI we look into two specific examples of the
optimization problem, which provide additional intuition about
the minimizer. In both examples we will apply our model with
α = 1 and β = 5. Based on the above remarks, β = 5 implies
that all interactions for which |I0ij | < 0.1 will automatically
be set to zero, as we consider them too small. The full
understanding of the effect of the parameter α requires further
research. In general, higher values give precedence to well-
spread importance indices, while smaller values impose closer
adherence to the values given by the user.

V. A VAGUE FUZZY MEASURE

Having built our fuzzy measure reflecting criteria impor-
tance and interactions we now proceed with modeling the
vague statement, given by the DM. The typical way vague
statements have been modeled in the literature on MCDA is by
using the ordered weighted average (OWA) and the weighted
OWA (WOWA) [48], [43], [40]. There exist well developed
methods for constructing weighing vectors for the OWA and
we choose that of RIM Quantifiers, based on the truncated
Gaussian distribution [1].

The next step in our construction involves combining the
two sets of parameters into a vague fuzzy measure, which
will be the focus of this section. As mentioned earlier there is
no accepted way of integrating these parameters and we thus
develop a novel method for accomplishing this task. Using
the definition of the WOWA as motivation we propose the
following formulation.

Definition 6. Given a fuzzy measure ν and a weighing vector
w we define a fuzzy measure µ as

µ(A) =W (ν(A)), for all A ∈ 2N

where as usual 2N is the power set of N , and W is a
monotone non-decreasing function that interpolates the points
( in ,
∑
j≤i wj) together with the point (0, 0). Moreover, W is

required to have the following two properties:
1) W ( in ) =

∑
j≤i wj , i = 0, · · · , n;

2) W is linear if the points ( in ,
∑
j≤i wj) lie on a straight

line.

With the above specific composition, we propose a vague
fuzzy measure. Let us note that the obtained measure µ is
indeed a fuzzy measure, since W is monotone and preserves
zero. One can define many different functions W with the
properties in the above definition such as a linear spline,
a monotone quadratic spline, monotone cubic spline, etc.
In particular, throughout this paper W is piecewise linear,
interpolating the points ( in ,

∑
j≤i wj).

A. Constructing the weights

There are many choices for the weighing vector w. Some
typical examples seen in literature define w as the unique
solution to a different optimization problem such as the
maximal entropy OWA and the minimal variance OWA [12].
Yet other ways involve the use of weight generating functions
[1]. In Definition 6 there is no restriction on what the weighing
vector can be, so long as it is normalized and has nonnegative
entries. Based on experiments, we favor the use of weight
generating function, specifically, those based on the truncated
Gaussian distribution.

Given a vague statement of the form “k out of n criteria
are satisfied”, we construct a Gaussian distribution with mean
m = 2k−1

2n and variance σ. The weights are explicitly given
as:

Definition 7. If w is a weighing vector of size n, we have that

wi =
1

K

∫ i
n

i−1
n

e
−(x−m)2

2σ2 dx

where K is a normalization constant.

We choose 2k−1
2n , because it lies precisely between k−1

n and
k
n , which would mean that the largest entry of w is precisely
the k-th entry. This would imply that the ordered weighted
average of a vector is high, precisely when it has at least k
high entries. And we motivate the latter with a simple example.
Example: We are given the vague statement ”at least 3 (out of
5) entries of z are high”. From the above definition m = 0.5
and for σ = 0.1 and w = (0.001, 0.157, 0.683, 0.157, 0.001).
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Then w has a clear emphasis on the third weight, which
implies that the only way that OWAw(z) =< w, z ↘> is
high is if the third highest entry of z is high, meaning that z
contains at least three high entries.

B. Properties of the vague Choquet integral

Based on the above formulation of the weighing vector w
and the measure ν, constructed in the previous section, we
can now construct µ (as in the formulation of Definition 6).
Our final aggregation function is just a Choquet integral with
respect to µ, which we denote by Cν,w to show its relationship
to both w and ν.

We next wish to examine some of the basic properties
of the newly constructed aggregation function. And we will
begin by first looking into a couple of examples that compare
how the function behaves, compared to OWAw and Cν (the
Choquet integral with respect to ν). For the purposes of the
following examples we will not use the optimization method of
construction for ν, but rather just a simple handmade measure.
Example 2a: Suppose that we have three criteria -
{K1,K2,K3} and we are given that K1 ∼ K2 ∼ 2K3.
In addition, let K1 and K2 have 40% synergy and let the
vague statement provided be “at least two scores are high.”
We consider two vectors x and y, such that x = [0.85 0.8 0.1]
and y = [0.3 0.2 0.8].

The importance and interaction indices that define ν
uniquely are: I1 = I2 = 0.4, I3 = 0.2, I12 = 0.4 and I23 =
I13 = 0. The weighing vector w in OWA is w = [0.1 0.8 0.1].
We calculate the aggregated value of the two vectors using the
different aggregation functions. The results are summarized in
Table I.

Vector OWAw Cν Cw,ν

x 0.735 0.670 0.761
y 0.340 0.340 0.256

TABLE I

As can be seen from Table I the aggregated value for x
using Cν,w is higher than those obtained from using OWAw

and Cν , while the one for y is lower. Both the OWA and the
Choquet integral agree that x should receive a high aggregated
score, which implies that x satisfies the constraints in both
operators well. Looking at x we can clearly see that it has
two high entries, which correspond to the two most important
criteria (K1 and K2), which are also synergetic. In addition, x
satisfies well the vague statement. Thus if we combine the two
informations, we should obtain that x receives an overall high
score, which is precisely the result we obtained. Similarly, for
y we can see that its lowest values correspond to the most
important criteria K1 and K2. In addition, y does not satisfy
the given vague statement well, and thus should receive a low
score as is the case. If a vector performs well on both kinds
of information - importance/interactions and vague statement,
then Cν,w assigns it a higher value than either OWAw or Cν .
And if the vector performs badly on all counts it receives an
even lower score. This is the desired behavior that we aim

Vector OWAw Cν Cw,ν

x [0.1 0.8 0.1] [0.2 0.6 0.2] [0.06 0.88 0.06]
y [0.8 0.1 0.1] [0.2 0.6 0.2] [0.74 0.20 0.06]

TABLE II

for. Yet it is interesting to look into exactly how the vague
fuzzy measure redistributes the weights in OWA, according to
the information contained in the fuzzy measure ν. In order to
answer this question let us look at the previous example in
more detail.

Example 2b: As before x = [0.85 0.8 0.1] and y =
[0.3 0.2 0.8]. Let us consider the “weights” that each entry
receives using the OWA, the Choquet integral and the vague
Choquet integral. Specifically, for the two integrals we shall
call the k-th “weight” the parameter that appears in front of
the k-th index (i.e. ν({j|zj ≥ z(k)}) − ν({j|zj ≥ z(k+1)})
in the language of Definition 2). The weights for x and y are
summarized in Table II.

Looking at Table II we can at least intuitively see how
the proposed model operates. Consider the vector x. We see
that both OWAw and Cν agree that the second entry should
have a high weight, which results in a very high weight in
Cw,ν . Similarly as the first and last entry of x receive low
weights in both operators, those become even lower using
the vague Choquet integral. Thus when both the OWA and
Choquet integral agree that a certain entry should receive a
high weight, this translates to an even higher weight in the
vague Choquet integral and the converse is also true.

It is worth examining how the function behaves when the
information from the OWA and the Choquet integral is not
consistent. As an example consider the vector y where the
aggregation functions disagree on the first two entries. In this
case, the first weight in Cw,ν can be understood as a skewed
down version of the weight in OWAw. The reason for the
reduction is the low weight assigned by Cν for the same entry.
Conversely the second entry of y receives a higher weight in
Cw,ν than in OWAw because its weight in Cν is high. In
general weights in the OWA are skewed according to those
in the Choquet integral, although the exact degree depends on
the parameters of the models.

C. Some Important Cases

The proposed model has some additional nice properties,
apart from the ones already described. In particular it reduces
to some interesting aggregation functions in specific cases. We
summarize these properties below.

1) If all interactions among criteria are zero, the vague
Choquet integral becomes the WOWAw,I, where w is
the weighing vector of OWA and I is the Shapley value.

2) If all interactions among criteria are zero and all cri-
teria are equally important, the vague Choquet integral
becomes the OWAw.

3) If w = [ 1n , ...,
1
n ], the vague Choquet integral becomes

a Choquet integral with respect to the fuzzy measure ν.



8

4) If w = [ 1n , ...,
1
n ] and all interactions among criteria are

zero, the vague Choquet integral becomes a weighted
mean with a weighing vector I.

5) If w = [ 1n , ...,
1
n ], all interactions among criteria are zero

and all criteria are equally important, the vague Choquet
integral becomes the arithmetic mean.

All of the above properties can directly be verified by the
definition of the vague fuzzy measure.

Remark: The two steps that we implemented in constructing
our vague measure are completely autonomous, meaning that
each step can be applied individually to different problems,
for which they are suited.

VI. MODEL EVALUATION

In this section we present a practical implementation of our
proposed approach. We consider several examples of synthetic
data and describe the actions of the developed aggregation
functions. Our goal is to illustrate the contribution of each
step in our construction of the vague Choquet integral.

The proposed approach was implemented within MATLAB
[51]. The optimization problem is solved using cvx - software
package for MATLAB (for strictly convex optimization) [2].

A. Example I

The general setup is as follows. A DM chooses from a set
of six options, which can be compared with respect to five
criteria. To each of the six alternatives we associate a vector
in R5, whose entries represent how well the element satisfies
each criterion. As before we refer to the entries of the vectors
as scores and all scores are assumed to be on the same scale
[0, 1]. The DM provides a set of preferences and the task is
to create an aggregation function modeling those preferences.

We denote the five criteria using the same notation as in
Section V, namely K1,K2, · · · ,K5. Suppose that the DM has
the following set of preferences relating the importance of the
criteria.

K1 ∼ K2 ∼ 2K3 ∼ 3K4 ∼ 4K5,

i.e. the DM believes that the first criterion is just as important
as the second one, is twice as important as the third etc. As
discussed before we interpret the above set of preferences in
terms of a linear relationship between the importance indices
of a 2-additive fuzzy measure (e.g. I1 = I2 = 2I3).

In addition, suppose the following set of interactions is
given.

I012 = 0.4 I013 = −0.15 I014 = 0.05

I023 = 0.25 I034 = 0.2 I045 = −0.25

Remark: The formulation of the interaction index requires
that Iij = Iji for all pairs of criteria i, j. We thus use the
convention that I012 = 0.4 implies I021 = 0.4 and vice versa.
Also as was mentioned in Section IV, all interactions for which
no information is given are set to 0.

Summarizing the above set of preferences as well as the
well-posedness conditions for the fuzzy measure, we obtain

the following optimization problem, which we solve using cvx.

minimize
Ii,Iij

α
∑
i∈N

Ii log Ii +
∑
i,j∈N

(
|Iij |+ β(Iij − I0ij)2

)
subject to (Ii, Iij) ∈ A

The feasible set A is given by

A =


5∑
i=1

aikIi = 0 ∀k,
5∑
i=1

Ii = 1, and Ii ≥
1

2

∑
i6=j

|Iij |


and the values aik are the entries of the matrix

1 −1 0 0 0
1 0 −2 0 0
1 0 0 −3 0
1 0 0 0 −4


The obtained solution to the above problem using α = 1

and β = 5, as discussed in the end of Section IV, is

I1 = 0.3243, I2 = 0.3243, I3 = 0.1622,

I4 = 0.1081, I5 = 0.0811
(6)

I12 = 0.3, I13 = −0.05, I23 = 0.15

I34 = 0.0831, I45 = −0.1331
(7)

In addition, as remarked earlier, we have that Iij = Iji so that
the above equalities are valid for the corresponding interaction
indices and all other interactions are 0.

We remark that no 2-additive measure can be defined
exactly on the set of preferences given by the user. The latter
can be seen by first noting that the equality constraints for the
importance indices together with the normalization constraint
uniquely determine the the solution in (6). This implies that
one of the conditions for monotonicity I3 ≥ 1/2

∑
i |I0i3| ⇐⇒

0.1622 ≥ 0.2250 necessarily fails.
The next step of our construction involves designing a

weighing vector for an OWA operator capturing a vague
statement. We consider the vague statements, which require
“some” and “most” of the criteria to be satisfied. Since we
are working with 5 criteria, we will interpret the two vague
statements as requiring 2 and respectively 3 criteria to be
satisfied. In our method for constructing the weighing vectors,
described in Section V, we set k = 2 and k = 3, respectively
and σ = 0.10. We obtain the following weighing vectors.

w1 = [0.1575 0.6836 0.1575 0.1575 0.0000] (8)

w2 = [0.0013 0.1573 0.6827 0.1573 0.0013] (9)

The choice for σ is somewhat arbitrary. In general, larger
values lead to more spread out entries in the weighing vectors,
whereas smaller values give more concentrated distributions.
In our case, we have just over two thirds of the weight
concentrated in the second and third entry of the above
vectors respectively. The latter gives a sharp difference in the
aggregated values (using OWA) between vectors that satisfy
the vague statement poorly and those that satisfy it well.

The final step in our construction involves building the
two vague fuzzy measures (corresponding to the two vague
statements), using the 2-added measure obtained above as well
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Criterion z1 z2 z3 z4 z5 z6
K1 0.6 0 0.8 0.1 0.1 0.5
K2 0.65 0.55 0.75 0.75 0.2 0
K3 0.65 0.85 0 0.75 0.9 1
K4 0.8 0.9 0.1 0.75 0.9 0
K5 0.15 1 0.8 0.5 0.9 1

TABLE III

as w1 and w2. We accomplish this as before by applying the
Definition 6 in Section V.

We next consider the six vectors representing the alter-
natives the DM is to choose from. We denote the latter by
z1, z2, · · · , z6. The vectors are given in Table III.

We are next interested in the aggregated values that are
obtained using the 2-additive Choquet integral, the OWA
operator and the vague Choquet integral. The results are
summarized in Tables IVa and IVb. The results in Table IVa
are based on using w1 for the OWA operator and the vague
Choquet integral, while those in Table IVb depend on w2.

TABLE IV

(a) Results using w1

Vector OWAw1 Cν Cν,w1

z1 0.6736 0.6402 0.6631
z2 0.9074 0.4154 0.6965
z3 0.7912 0.5771 0.7827
z4 0.7497 0.4543 0.721
z5 0.8991 0.366 0.5487
z6 0.9199 0.2929 0.475

(b) Results using w2

Vector OWAw2 Cν Cν,w2

z1 0.6417 0.6402 0.6313
z2 0.8097 0.4154 0.3946
z3 0.6547 0.5771 0.7231
z4 0.7098 0.4543 0.525
z5 0.7888 0.366 0.224
z6 0.5 0.2929 0.0744

Firstly, we consider the action of the Choquet integral on the
given vectors. According to Table IV the highest aggregated
values belong to z1 and z3, while the lowest to z5 and z6.
Looking at Table III and the parameters (6) and (7) it is easy
to explain the obtained results. Indeed, z1 satisfies well the
four most important criteria, which positively interact with one
another, while z3 satisfies very well the two most important
criteria with the highest level of synergy. On the other hand,
z5 and z6 mostly satisfy the least important criteria and thus
receive a lower aggregated value.

The next action of interest is that of the OWA operator.
From Table IVa we notice that z2, z5 and z6 all receive very
high aggregated values, which is precisely because they have
at least two entries ≥ 0.90. The vector z1 receives the lowest
value as it contains only one relatively high entry, while z3

and z4 lie in between. The picture dramatically changes once
we change the vague statement as can be seen in Table IVb.
The highest aggregated values, belong to z2 and z5, while
z6 receives the lowest rank. The vector z6 has exactly two
very high entries, which implies that it satisfies the first vague
statement well, while the second very poorly and thus the
change in its rank when applying the two OWA operators is
not only expected, but in fact desired. Our weighing vectors
were designed to differentiate sharply between alternatives that
satisfy the vague statement well and poorly, which is precisely
what we observe in Table IV.

Finally, we look into the results for the vague Choquet
integral. For now we restrict our attention to Table IVa.
According to the vague Choquet integral, the optimal choice
is z3, while the worst is z6. We remark that z3 satisfies well
both the preferences regarding the importance and interactions
as well as the vague statement as can be seen in Table IVa.
It has relatively high scores with respect to OWAw1 and Cν
and this motivates its top position when applying the vague
Choquet integral. A similar argument can be made about z4,
which again consistently received good scores with respect
to the first two aggregators. Conversely, z6 and z1, which
were the top-ranking vectors according to OWAw1 and Cν
respectively, both receive a lower overall score, because they
fail to satisfy some portion of the preferences well.

The situation looks similar when analyzing the results in
Table IVb. We again observe that z3 performs well as it
satisfies all types of preferences well. On the other hand we
notice a shift in the ranking of z1, which now possesses
the second overall ranking according to the vague Choquet
integral. The latter is due to its better relative performance
on the vague statement, compared to Table IVa. The worst
performing vector is again z6, although we see a dramatic
change in its aggregated value, compared to that in Table IVa.
z6 poorly satisfies both types of preferences, which implies
that it should receive an even lower overall score as is the
case.

The three aggregation functions we considered lead to a
different ordering of the alternatives, which individually and
compared with respect to one another provide a reasonable
ranking of the given alternatives. The vague Choquet integral
clearly gives precedence to alternatives, which perform consis-
tently well on both types of user preferences, while penalizing
options that fail to satisfy either. This is the general behavior
we set out to model.

B. Example II

In the previous example we looked into how the different
steps of the construction of our final aggregation function acted
on a set of vectors. In this example we are interested in how
different vague Choquet integrals (based on different sets of
preferences) rate the same set of alternatives. We can interpret
this example as having several DMs with different preferences,
choosing from the same options. We aim to illustrate how
different preferences translate into different choices based on
our model. To this end, we consider a second set of preferences
for the importance and interactions of criteria.
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Suppose that a different DM has the following preferences.

K4 ∼ 4K1 2K3 ∼ 3K5,

In addition, suppose that the he/she believes the interactions
should be:

I012 = 0.2 I023 = 0.35 I025 = 0.15

I034 = 0.05; I035 = 0.1; I045 = −0.3

Based on the above preferences we obtain the following
values for the importance and interaction indices.

I1 = 0.0716 I2 = 0.217 I3 = 0.2551

I4 = 0.2862 I5 = 0.1701
(10)

I12 = 0.1, I23 = 0.25, I25 = 0.05, I45 = −0.2 (11)

Let us denote by ν1 and ν2 the 2-additive measures
based on the preferences in the previous and in this ex-
ample respectively. In addition, we will consider the same
two vague statements as before, which are modeled via
the weighing vectors w1 and w2 (given in (8) and (9)).
Finally, we shall consider the ordering of the alternatives
z1, z2, · · · , z6, induced by the four vague Choquet integrals
- Cν1,w1 , Cν1,w2 , Cν2,w1 , Cν2,w2 . The aggregated values are
provided in Table Va and for clarity we present the ordering
of the vectors in Table Vb.

TABLE V

(a) Aggregated values

Vector Cν1,w1 Cν1,w2 Cν2,w1 Cν2,w2

z1 0.6631 0.6313 0.7691 0.6712
z2 0.6965 0.3946 0.915 0.7795
z3 0.7827 0.7231 0.6831 0.2661
z4 0.721 0.525 0.75 0.7461
z5 0.5487 0.224 0.8778 0.6969
z6 0.475 0.0744 0.7934 0.1477

(b) Rank of vectors

Vector Cν1,w1 Cν1,w2 Cν2,w1 Cν2,w2

z1 3 3 2 2
z2 4 1 5 4
z3 2 4 6 5
z4 1 2 1 1
z5 5 5 4 3
z6 6 6 3 6

As can be seen from Table Vb the different sets of pref-
erences naturally lead to different ranking of the alternatives.
When the preferences of the DM are modeled using ν1, we
see that for both vague statements z3 is the optimal choice.
In particular, z3 has three high entries and thus satisfies both
vague statements well. A similar situation can be seen for z2,
when the 2-additive measure used is ν2.

In order to see how vague statements change the rank of
an option we only need to consider z6. z6 has exactly two
high entries and thus it is a good representative of a vector
that satisfies only one of the vague statements well. And as

can be seen in Table Vb, when the 2-additive measure is ν2,
the ranking of z6 drastically changes depending on the given
vague statement. Such a situation is not observed when ν1
is used, because as seen in Table IVa, z6 fails to satisfy the
preferences modeled by ν1, and its final aggregated score is
lowest when either vague statement is used.

Finally, we remark on the effect of the 2-additive measure,
reflecting the importance and interactions. When ν1 is used z3
is the best option, as it has high entries in the most important
and most synergetic two criteria. That is no longer the case
when the preferences are modeled by ν2, and as can be seen
in Table Vb the rank of z3 drops to the very bottom.

VII. CONCLUSION

We presented a novel and efficient method for construct-
ing an aggregation function capturing two types of infor-
mation: vague statements as used in the OWA and impor-
tance/interactions of criteria as used in the Choquet integral.
The proposed aggregation function, called a vague Choquet
integral, successfully combines two types of information that
were previously unintegrated. The proposed model is built
automatically and without the need of any data learning.
The vague fuzzy measure, underlying our final model, is
constructed by combining a 2-additive fuzzy measure and
a weighing vector capturing partial user information. The
weighing vector reflects the given vague statement and is
constructed using weight generating functions based on the
truncated Gaussian distribution. The 2-additive fuzzy measure
reflects importance and interactions of criteria and is obtained
by minimizing an L1 energy function. The solution to the
optimization problem is a 2-additive fuzzy measure, whose
interaction profile is sparse. To our knowledge this paper
presents the first application of L1 optimization in multi-
criteria decision-making problems, which provides an auto-
matic construction of a fuzzy measure.

The proposed model was shown to better incorporate a
complex set of user preferences than the OWA or the Choquet
integral separately. Some future research includes finding
alternative and better ways to interpret user preferences as
constraints within the optimization problem. In addition, it
would be interesting to consider a MACBETH-type approach
for reflecting the contribution of each preference to the final
aggregated value. This would lead to a better understanding
of the presented models and improve their applicability to real
world problems.
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